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Optimal undulatory swimming for a single
fish-like body and for a pair of

interacting swimmers
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We establish through numerical simulation conditions for optimal undulatory
propulsion for a single fish, and for a pair of hydrodynamically interacting fish,
accounting for linear and angular recoil. We first employ systematic two-dimensional
(2-D) simulations to identify conditions for minimal propulsive power of a self-
propelled fish, and continue with targeted 3-D simulations for a danio-like fish; all at
Reynolds number 5000. We find that the Strouhal number, phase angle between heave
and pitch at the trailing edge, and angle of attack are principal parameters. For 2-D
simulations, imposing a deformation based on measured displacement for carangiform
swimming provides, at best, efficiency of 35 %, which increases to 50 % for an
optimized motion; for a 3-D fish, the efficiency increases from 22 % to 34 %. Indeed,
angular recoil has significant impact on efficiency, and optimized body bending
requires maximum bending amplitude upstream of the trailing edge. Next, we turn to
2-D simulation of two hydrodynamically interacting fish. We find that the upstream
fish benefits energetically only for small distances. In contrast, the downstream fish
can benefit at any position that allows interaction with the upstream wake, provided
its body motion is timed appropriately with respect to the oncoming vortices. For
an in-line configuration, one body length apart, the efficiency of the downstream
fish can increase from 50 % to 60 %; for an offset arrangement it can reach 80 %.
This proves that in groups of fish, energy savings can be achieved for downstream
fish through interaction with oncoming vortices, even when the downstream fish lies
directly inside the jet-like flow of an upstream fish.
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1. Introduction

The grace and agility of swimming fish and marine mammals have excited the
curiosity of scientists for a long time. For example, the Northern pike (Enox lucius)
can reach accelerations up to 25g (Harper & Blake 1990), while the European eel
(Anguilla anguilla) annually swims over 5000 km across the Atlantic Ocean while
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fasting (Ginneken et al. 2005): fish employing body undulation as their primary
means of propulsion greatly surpass all engineered vehicles in terms of fast-starting
and manoeuvering capabilities. In the hope of shedding light to the fluid mechanisms
behind the aquatic animals’ extraordinary performance, biologists, hydrodynamicists
and engineers have observed fish swimming (Gray 1933; Videler & Hess 1984;
Tytell 2004), measured their metabolic rates (Bainbridge 1961; Webb 1971), proposed
hydrodynamic principles and scaling laws (Gero 1952; Lighthill 1960; Triantafyllou,
Triantafyllou & Gopalkrishnan 1991; Gazzola, Argentina & Mahadevan 2014; van
Weerden, Reid & Hemelrijk 2014), and built robots replicating the function of fish
(Triantafyllou & Triantafyllou 1995; Stefanini et al. 2012; Sefati et al. 2013; Ijspeert
2014).

With the increase in available computational power, computational fluid dynamics
(CFD) provides an attractive alternative means of studying fish swimming. CFD
is indeed a unique complement to experiments on live fish that can potentially
give access to full three-dimensional (3-D) flow structures as well as local forces
and power (Deng et al. 2013). Since the viscous simulations of a two-dimensional
self-propelled anguilliform swimmer by Carling, Williams & Bowtell (1998), a
variety of methods have been developed to simulate fish swimming. These methods
range from arbitrary Eulerian–Lagrangian methods with deformable mesh (Kern
& Koumoutsakos 2006), to immersed boundary methods (Borazjani & Sotiropoulos
2008; Shirgaonkar, MacIver & Patankar 2009; Liu, Yu & Tong 2011; Bergmann, Iollo
& Mittal 2014), to multiparticle collision dynamics methods (Reid et al. 2012) and
viscous vortex particle methods (Eldredge 2006). However, the application of CFD to
the study of fish swimming is still in its infancy, and a number of modelling decisions
need to be made. Once these modelling and numerical questions have been resolved,
CFD becomes a very powerful tool providing unmatched detail of the flow properties,
while allowing wide parametric searches through systematic changes in the body
geometry or the swimming kinematics. As a result, there has recently been a number
of publications reporting efforts in optimizing fish shape and/or swimming motion
(Kern & Koumoutsakos 2006; Toki & Yue 2012; Eloy 2013; van Rees, Gazzola &
Koumoutsakos 2013). In this paper we first present a methodology for simulating fish
swimming in which the impact of modelling choices are carefully quantified. We use
this methodology to investigate efficient swimming for an undulating body.

In addition to optimizing their self-generated flow structures, fish may be able
to use the flow patterns from another swimming fish to save energy. Indeed, it has
been shown by Liao et al. (2003a) that fish can use vortices to reduce the cost of
locomotion, but whether energy saving is an important reason for schooling has long
been a matter of discussion. Weihs (1973) is one of the few papers proposing a
hydrodynamic theory of schooling, viz. that fish can save energy by swimming in
a ‘diamond’ configuration, taking advantage of areas of reduced average oncoming
velocity that form between adjacent propulsive wakes. Partridge & Pitcher (1979)
later commented that saithe (Pollachius virens), herring (Clupea harengus) and cod
(Gadus morhua) do not swim in the diamond pattern, which led Pitcher (1986) to
write that ‘no valid evidence of hydrodynamic advantage has been produced, and
existing evidence contradicts most aspects of the only quantitative testable theory
published’. Yet, as pointed out by Abrahams & Colgan (1987), such conclusions
may be premature because they ignore the potential trade-offs involved in school
functions. Indeed, despite the difficulty of assessing the importance of energy saving
in schooling due to the dynamic nature of schools, there has been experimental
evidence that fish located in the rear part of a school spend less energy than those



www.manaraa.com

Optimal undulatory swimming 303

in the front (Killen et al. 2012). A recent paper suggests that, in a fish school,
individuals in every position have reduced costs of swimming, compared to when
they swim at the same speed but alone (Marras et al. 2014). Further, the recent
finding that ibises in a flock position themselves and phase their motion such that
they can take advantage of the vortices left by the ibis in front of them, suggests
that analogous mechanisms might be found for fish schools as well (Portugal et al.
2014).

A number of recent computational studies have also been completed with the
goal of investigating the flow structures between schooling fish and the interactions
between fish in different swimming arrangements (Zhu & Peskin 2003; Dong &
Lu 2007; Alben 2009; Daghooghi & Borazjani 2015; Hemelrijk et al. 2015). Alben
(2009) studied the case of both side-by-side and in-line flags, finding that the timing
of flapping, which depended on the distance between the flags, was very important
for both. For the hydrodynamically richer in-line case, the drag force was increased
for synchronous flapping, which correlated with constructive interaction between the
two vortex wakes. However, Hemelrijk et al. (2015) found that even when fish do not
pay any attention to their timing, they were able to save more energy when schooling
in diamond, rectangular, phalanx and in-line formations than when swimming alone.
Daghooghi & Borazjani (2015) ran 3-D simulations to investigate the validity of
two hypotheses on the increased efficiency of schooling fish: the channelling effect
and vortex capture. They found significant evidence that the channelling effect, in
which the required thrust force is decreased due to the proximity of other fish,
was responsible for the observed gains in efficiency. In this paper we investigate
the mechanisms by which two fish swimming as a pair can save energy, and the
importance of timing and positioning.

In § 2, we discuss modelling considerations for the simulation of fish swimming
and briefly present the governing equations and numerical details specific to fish
swimming simulations. We use the model and numerical method to optimize the gait
of an undulating fish-like foil in open water (§ 3) and the positioning and timing for
a pair of undulating fish-like foils (§ 4).

2. Methods: modelling and simulations
Aquatic animals exhibit a wide variety of designs and propulsion modes. However,

most fish and cetaceans generate thrust by bending their bodies into a backward-
travelling wave that extends to the caudal fin, a type of swimming often classified
as body and/or caudal fin (BCF) locomotion (Sfakiotakis, Lane & Davies 1999). In
the present paper, we investigate the efficiency of BCF propulsion, with particular
examples drawn from eels that undulate their whole body (anguilliform motion), as
well as saithe and mackerel that only undulate the aft third of their body (carangiform
motion) (Breder 1926). For expedient calculations, and since the swimming motion
bends the body as a plate, i.e. it is quasi-two-dimensional, we first use 2-D simulations
to investigate the impact of various kinematic parameters and then compare the results
with 3-D simulations of a danio-shaped body.

2.1. Fish shape and swimming motion
In order to capture the main parameters of BCF swimming while keeping the problem
complexity manageable, we model the main body of the fish and its caudal fin but not
the other fins or details on the body such as scales, finlets and other protrusions. We
represent a swimming fish by a neutrally buoyant undulating body of length L = 1,
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FIGURE 1. Schematic showing the fish model parameters. An elongated body of length
L undulates in a flow of speed Us with a wave travelling backward at speed fλ and
amplitude a at the trailing edge.
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FIGURE 2. (Colour online) Three-dimensional fish geometry based on a giant danio.

as illustrated in figure 1. For the 2-D simulations, a NACA0012 shape is chosen at
rest, whereas a danio-shaped body, shown in figure 2, is used for the 3-D simulations.
The body propels itself at average speed Us in a fluid of kinematic viscosity ν and
density ρ by oscillating its mid-line in the transverse direction y. The leading edge of
the body at rest is located at x= 0 and its trailing edge at x= 1. In 2-D simulations,
we will refer to the body as a ‘fish’ rather than a flexible foil to avoid confusion with
the caudal fin, and with non-self-propelled flexible foils used as propulsors.

We employ travelling wave kinematics that resemble those observed in fish
according to either carangiform or anguilliform swimming, and include recoil. The
lateral displacement, h, of a point located at x along the foil is given at time t by
the sum of body deformation h0, recoil B and steering y1:

h(x, t) = h0(x, t)+ B(x, t)+ y1(x)
= a0A(x) sin(2π(x/λ− ft+ φ))+ B(x, t)+ y1(x)
= g(x) sin(2π( ft+ψ(x)))+ y1(x), (2.1)

where A(x), with A(1)= 1, is the envelope of the prescribed backward travelling wave
of wavelength λ and frequency f ,

B(x, t)= (ar + brx) sin(2π( ft+ φr)) (2.2)

is the recoil term due to the hydrodynamic forces on the fish, and

y1(x)=C(x2 + γ x+ β) (2.3)

can be used for steering (see appendix B) by adding camber to the fish, while γ and
β ensure that linear and angular momentum are conserved through the deformation.
The recoil term represents periodic solid body transversal displacement and rotation.
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FIGURE 3. (Colour online) Carangiform and anguilliform motion for f = 1.8 and a0 =
0.1 at Reynolds number Re = 5000 with recoil. (a) Prescribed amplitude envelopes, (b)
mid-line displacement.

The amplitude of the translation is ar, while the amplitude of the rotation is arctan(br).
The steering term y1 is necessary to ensure stability but, in the steady regime, y1� a0
(typically C< 0.025).

The parameter a0 determines the amplitude of the deformation h0 at the trailing
edge. It is adjusted through a feedback control loop to ensure that the average net
drag on the foil is 0, as described in appendix B. h0(x, t) can be used without the
recoil and steering terms in order to fully prescribe the kinematics of the swimmer,
in which case h(x, t)= h0(x, t). For a freely moving body with prescribed deformation,
the recoil is computed from the hydrodynamic forces on the body. In the latter case,
the envelope of the actual displacement is given by g(x), with peak to peak amplitude
at the trailing edge given by a= 2g(1).

The prescribed kinematics of a carangiform swimmer, based on the experimental
observation of steadily swimming saithe (Videler & Hess 1984; Videler 1993), is often
modelled without recoil (B= 0) as:

a0 = 0.1, A(x)= Ac(x)= 1− 0.825(x− 1)+ 1.625(x2 − 1), λ= 1. (2.4a−c)

This motion is for example used in Dong & Lu (2007), Borazjani & Sotiropoulos
(2008) and, in the rest of the paper, will be referred to as the carangiform gait.
Assuming B= 0, experimental observations of American eels (Tytell & Lauder 2004)
provide that anguilliform motion can be represented by:

a0 = 0.1, A(x)= Aa(x)= 1+ 0.323(x− 1)+ 0.310(x2 − 1), λ= 1. (2.5a−c)

Figure 3(a) shows the prescribed envelope A(x) for the carangiform (respectively
anguilliform) swimmer defined in (2.4) (respectively (2.5)). Figure 3(b) illustrates the
resulting mid-line displacement in the presence of the recoil term.

2.2. Kinematic parameters
The goal of this paper is to identify kinematic parameters that minimize the self-
propelled swimming power Pin for a given speed (Reynolds number) and body shape.
In order to quantify the fitness of each motion, the quasi-propulsive efficiency ηQP
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Name Symbol Expression

Power coefficient CP 2Pin/(ρU3
s L)

Quasi-propulsive efficiency ηQP RUs/Pin

Reynolds number Re UsL/ν
Strouhal number St fa/Us

Pitch angle θ —
Angle of attack α —
Peak to peak heave a —
Heave-pitch phase angle ψ —

TABLE 1. Kinematic and other dimensionless parameters.

is used, which compares Pin to the useful power, i.e. the resistance R of the rigid–
straight towed body at the same speed Us times the speed: ηQP= RUs/Pin. Indeed, as
discussed in Maertens, Triantafyllou & Yue (2015), the Froude propulsive efficiency is
not appropriate here as it is zero for a self-propelled body. Therefore, R is calculated
by towing a rigid body in the still flow with the prescribed velocity Us.

For rigid flapping foils, the parameters that characterize the motion and its
performance have been extensively studied (Anderson et al. 1998; Read, Hover &
Triantafyllou 2003). The principal kinematic parameters are the Strouhal number and
the maximum nominal angle of attack, and, to a lesser degree, the heave amplitude to
chord ratio, and the phase angle between heave and pitch; all, typically, measured at
25 % of the chord. The Strouhal number is a wake parameter, since it characterizes the
dynamics of the (unstable) wake (Triantafyllou et al. 1991; Triantafyllou, Triantafyllou
& Grosenbaugh 1993); hence the width of the wake must, in principle, be used as the
characteristic length. However, the width of the wake is unavailable beforehand, so
this characteristic length is approximated typically by the peak to peak motion of the
trailing edge. Hence, for an undulating flexible foil, we define the Strouhal number,
heave amplitude, pitch angle and nominal angle of attack at the trailing edge. These
parameters and others used throughout this paper are summarized in table 1. While
the motion cannot be characterized by these parameters alone, they play an important
role in determining the swimming efficiency.

Changing the amplitude of motion and Strouhal number can be achieved through
parameters like a0 and f (though, for a given motion and average velocity, there is a
unique amplitude that ensures a steady velocity) but, in general, the pitch amplitude
θmax and maximum angle of attack αmax cannot be directly controlled. Therefore,
when optimizing the swimming gait, it is important to choose a parametrization that
allows to adjust the pitch and angle of attack amplitudes independently of the heave
amplitude and Strouhal number. This is best done by changing parameters that control
the derivative of the prescribed envelope A(x) at the trailing edge.

In this study, the wavelength of the travelling wave is fixed, equal to the body
length, and the average swimming speed is adjusted to ensure a Reynolds number
Re = 5000. Fish body shape is also fixed, while the linear and angular recoil terms
are computed by integration of the hydrodynamic forces. The lateral flexing motion
h0(x, t) (i.e. the lateral motion after the linear and angular recoil are subtracted)
is characterized by four parameters: the frequency, amplitude and two parameters
controlling the shape of A(x), the envelope of the unsteady bending motion. With
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FIGURE 4. Flow configuration for the undulating NACA0012 simulations. The vorticity
field for the carangiform motion with f = 1.8 and zero mean drag is shown as an example.

prescribed frequency, the amplitude is automatically adjusted to satisfy self-propulsion
at Re= 5000, while the two remaining parameters are varied systematically in order
to identify the values that minimize the swimming power (equivalently, maximize the
quasi-propulsive efficiency ηQP). In order to explore a wide range of motions, two
different parametrizations are used for A(x): a quadratic envelope and a Gaussian
envelope (see details in § 3.1).

2.3. Governing equations and numerical implementation
The motion of a self-propelled swimming body is determined by the coupled fluid–
body dynamics. The physical parameters are non-dimensionalized by the fish body
length L, its intended average cruising speed Us and the density of water ρ.

In order to solve the coupled fluid/body problem described above, we adapted
the second-order boundary data immersion method (BDIM) presented in Maertens
& Weymouth (2015). The validation of the numerical method used in the present
paper for simulating self-propelled undulating bodies is presented in appendix A.
For the two-dimensional simulations, constant velocity u = Us is used on the inlet
(x=−6), periodic boundary conditions on the upper and lower boundaries (y=±2.4)
and a zero gradient exit condition with global flux correction (x = 7). As shown in
appendix A, the domain is large enough, such that the boundaries do not impact the
results of the simulation. The Cartesian grid is uniform near the fish and uses a 2 %
geometric expansion ratio for the spacing in the far field, as illustrated in figure 4.
As discussed in appendix A, the grid spacing near the fish is dx= dy= 1/160 for the
optimization procedures, which allows reasonable accuracy and fast iterations. The
optimized kinematics are then simulated using a finer grid with dx = dy = 1/320 in
order to guarantee an error of less than 10 %. Similarly, the fine grid is used for all
the two-fish simulations.

The three-dimensional simulations are run on a 6 × 3 × 3 domain with constant
velocity u=Us on the inlet, a zero gradient exit condition with global flux correction,
and periodic boundary conditions along y and z boundaries. The Cartesian grid is
uniform near the fish with grid size dx= dy= dz= 1/100 and uses a 4 % geometric
expansion ratio for the spacing in the far field.

The fluid and body equations are integrated over the fluid and body domains,
respectively Ωf and Ωb, with a kernel of radius ε = 2 dx. The BDIM equations for
the smoothed velocity field uε are valid over the complete domain Ω =Ωf ∪Ωb and
enforce the no-slip boundary condition at the interface. These equations, integrated
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from time t to time t+ = t+1t, are:

uε(t+)= v(t+)+
(
µε0(d)+µε1(d)

∂

∂n

)
(uε(t)− v(t+)+R1t − ∂P1t),

∇ · uε(t+)= 0,

 (2.6)

where v is the velocity field associated with the closest body, n̂ the unitary normal to
the closest fluid/solid boundary (pointing toward the fluid) and d the signed distance
to the closest boundary (d > 0 within the fluid, d < 0 inside a body). µε0 and µε1
are respectively the zeroth and first central moments of the smooth delta kernel (see
Maertens & Weymouth (2015) for more details). ∂P1t, the pressure impulse, and R1t,
accounting for all the non-pressure terms, are defined as:

R1t(u)=
∫ t0+1t

t0

[−(u · ∇)u+ ν∇2u
]

dt, ∂P1t =
∫ t0+1t

t0

1
ρ
∇p dt. (2.7a,b)

In order to simplify the equations of motion, we consider motion within the (x, y)
plane, such that the translational velocity of the body centre of mass (COM), vc, is a
two-dimensional vector (vx

c, v
y
c), and its rotation velocity is ωb = ωz

b. We then define
the generalized velocity V, location X, and force F vectors, as well as the generalized
mass matrix M:

V =
vx

c
vy

c
ωb

 , X=
x

y
θ

 , F=
Fx

h
Fy

h
Mz

c

 , M =
m 0 0

0 m 0
0 0 Ic

 , (2.8a−d)

where Fh is the hydrodynamic force on the body, m is the mass of the body which
has density ρb = ρ and Ic its moment of inertia with respect to the COM, computed
at each time step. The motion of the body is governed by:

d
dt
(MV)=F. (2.9)

The coupled dynamic equations are discretized using a sequentially staggered Euler
explicit integration scheme with Heun’s corrector. Sequentially staggered schemes
are computationally efficient but, for large added mass, they become unconditionally
unstable (Förster, Wall & Ramm 2007), regardless of the particular scheme used.
In order to stabilize the numerical scheme, we introduce the virtual added mass
matrix Ma.

The virtual added mass, which is used in an implicit added mass scheme (Connell
& Yue 2007; Zhu & Shoele 2008; Peng & Zhu 2009), can eliminate the instability
due to large added mass, but its exact value will not affect the results. In the case
of an undulating fish, the coefficients of the matrix can be estimated from the added
mass of the straight fish body at zero angle of attack, which has been done here. In
the present simulations, only the terms necessary to the stability have been used and it
has been assessed that the exact value chosen for the added mass does not impact the
results, as long as it is large enough to ensure stability but not so large as to damp the
system. The virtual added mass used is a diagonal matrix with value [0 11m 13m].

We also define the total mass as:

MT =M +Ma. (2.10)
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FIGURE 5. (a) Linear and angular momentum and (b) corresponding velocities for a
neutrally buoyant self-propelled NACA0012 with carangiform motion at frequency f =
1/T = 2.1.

With these new definitions, we integrate (2.9) over a time step 1t in the form:

V(t+1t)=V(t)+M−1
T

∫ t+1t

t

[
F+Ma

dV
dτ

]
dτ . (2.11)

At each time step tn, the fluid and body velocities, un = uε(tn) and vn = v(tn)
respectively, are calculated from the velocities and forces at the previous time steps
according to (2.6) and (2.11) (for additional details, see Maertens 2015).

2.4. The importance of recoil
Equation (2.11) determines the recoil B(x, t) resulting from the prescribed flexing
h0(x, t) and the related hydrodynamic forces F. Due to the significant added
complexity incurred by the recoil term, most of the earlier simulation studies neglected
it (Dong & Lu 2007; Borazjani & Sotiropoulos 2008). However, the amplitude of
this term, and its impact on the estimated swimming power, are substantial (Reid
et al. 2012), as illustrated below.

We consider first the carangiform motion of (2.4) with frequency f = 2.1.
Figure 5(a) shows the dimensionless linear and angular momentum for the self-
propelled fish, including the recoil, as determined by the hydrodynamic forces and
adaptive amplitude a0. The angular and transverse momentum are larger than the
longitudinal momentum, but the three amplitudes are comparable. However, the
non-dimensional moment of inertia of the fish is much smaller than its mass:

m= 0.081, Ic = 0.0045, (2.12a,b)

where the mass and moment of inertia are non-dimensionalized by the length L and
density ρ. Therefore, whereas the linear momentum results in velocities smaller than
3 % of the free-stream Us, the rotation of the fish generates velocities at the trailing
edge up to 40 % of the free stream, as shown in figure 5(b). This observation suggests
that, whereas the longitudinal motion of the fish might be negligible, the transverse
motion and specifically the angular recoil, are important.

In order to further illustrate this result, figure 6 shows the quasi-propulsive efficiency
as a function of frequency for the carangiform and anguilliform motions with and
without recoil. The figure shows that, at all frequencies, the undulation with recoil
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FIGURE 6. (Colour online) Quasi-propulsive efficiency as a function of frequency for the
carangiform and anguilliform motions with and without recoil.

requires up to 40 % more power than the undulation without recoil. Therefore,
simulations that do not allow for recoil are likely to underestimate the swimming
power, as discussed in Reid et al. (2009). The figure also shows that the optimal
frequency without recoil might differ from the optimal frequency with recoil. In the
cases studied here, the optimal frequency for the carangiform undulation without
recoil is around f = 1.6, while with recoil it is around f = 2.1.

In summary, we have shown here that the impact of the angular recoil of the fish
on swimming performance is significant. In order to estimate meaningful values of
fish swimming efficiency, it is critical to allow for recoil.

2.5. Gait optimization procedure
Toki & Yue (2012) and Eloy (2013) combined an evolutionary algorithm with
Lighthill’s potential flow slender-body model to simultaneously optimize the shape
and kinematics, using, respectively, 22 and 9 parameters. In this paper, we employ
viscous simulations that are far more demanding computationally, hence we use only
two parameters, which allows us to find an optimum with a reduced number of
evaluations, and also facilitates the visualization and interpretation of the results.

For a given kinematic parametrization and frequency, the two parameters controlling
the envelope A(x) are optimized using derivative-free optimization (Rios & Sahinidis
2013). We apply the BOBYQA algorithm that performs bound-constrained optimization
using an iteratively constructed quadratic approximation for the objective function
(Powell 2009). For each set of parameters, the viscous simulation is run for 15
non-dimensional time units, and the average power coefficient CP across the last
10 undulation periods is calculated. Note that, as can be seen on figure 36(b) of
appendix A, the instantaneous power coefficient can be negative. Indeed, animals have
the capability to store energy in their tendons and hence recover energy during the
oscillatory cycle (Roberts & Azizi 2011). Although this recovery may not be 100 %,
under optimal conditions our estimate averaging the power coefficient regardless of
the instantaneous sign provides a good estimate of the power consumed.

Based on the values of CP, the implementation of BOBYQA provided by the
NLopt free C library (Johnson 2013) interfaced with Matlab computes the next set of
parameters. In order to avoid finding a local minimum due to numerical noise, after
the algorithm has converged, it is run again using the previously found minimum as
a starting point.
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3. Efficiency of swimming in open water
The goal in this section is to identify undulatory gaits that require the minimum

amount of power (Pin) to drive an elongated body at speed Us, such that the Reynolds
number is Re = 5000. In other words, we want to maximize the quasi-propulsive
efficiency ηQP of the self-propelled undulating body and identify the key parameters
under the constraints of fixed body size and shape, as well as Reynolds number. We
first consider a two-dimensional NACA0012-shaped fish and then apply the results to
a three-dimensional danio-shaped body.

3.1. Gait optimization for a two-dimensional foil
For several values of undulation frequency, we optimize the deformation envelope
A(x). A(x) has been traditionally modelled by a quadratic function, of the form:

A(x)= 1+ c1(x− 1)+ c2(x2 − 1). (3.1)

Unlike c1 and c2, A(0) and A(1/2) can be restricted to a rectangle and are easy to
interpret as the envelope amplitude at the leading edge and mid-chord respectively.
Therefore, in the figures, each envelope is represented by A(0) and A(1/2), the
amplitude at the trailing edge being by definition A(1)= 1.

First, we fix the undulation frequency to f = 1.8 and optimize the quadratic
envelope A(x), restricting A(0) to positive values. Figure 7(a) shows the efficiency as
a function of A(0) and A(1/2). The carangiform envelope used in previous sections
is denoted by a black square, and the anguilliform gait through a diamond. It is clear
that the envelopes above the dashed line, which are concave envelopes with a peak
upstream from the trailing edge, have good efficiency. The efficiency decreases very
quickly below the dashed line, as the envelope becomes convex with an increasing
amplitude at the trailing edge. Therefore, the envelope traditionally used to model
carangiform swimming is inefficient, whereas the anguilliform envelope, which is
closer to a straight line, is much more efficient. Among the concave envelopes,
A(0)= 0 seems best, together with 1 6 A(1/2)6 1.7, where the efficiency reaches a
value of 48 %. Since the optimal quadratic gait saturates the constraint A(0)> 0, we
then fix the leading edge amplitude to A(0)= 0 and optimize the undulation frequency
f and the second envelope parameter A(1/2). Figure 7(b) shows the efficiency as a
function of f and A(1/2). Here again, around the optimal point, the efficiency is not
very sensitive to the exact value of f and A(1/2). The optimal quadratic envelope
(A(0) = 0, A(1/2) = 1, A(1) = 1) has a maximum amplitude at x = 3/4 and reaches
an efficiency of ηQP = 49 % around f = 1.6.

Traditional models for swimming motion ignore recoil and therefore identify body
deformation with displacement. However, while a quadratic convex envelope can
reasonably be used to describe the displacement envelope of undulating fish, the
curvature envelope in saithe and mackerel has a distinctive peak around the peduncle
section (Videler & Hess 1984). The results from figure 7 also suggest that the
efficiency is higher if the deformation is largest upstream of the trailing edge rather
than at the trailing edge itself. Such envelopes can be better modelled by a Gaussian
function of the form:

A(x)= exp

(
−
(

x− x1

δ

)2

+
(

1− x1

δ

)2
)
, (3.2)

where x1 parametrizes the location of the peak and δ its width, as shown in figure 8.
With the Gaussian function, it is easy to change the pitch and angle of attack
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FIGURE 7. (Colour online) ηQP as a function of A(0) or f and A(1/2) for quadratic
envelopes. The black dots show the location of the points that have been used to build the
thin-plate smoothing spline (tpaps function in Matlab with smoothing parameter p= 0.999)
represented in colour. (a) Fixed frequency f = 1.8. The carangiform and anguilliform
motions are respectively denoted by a black square and a black diamond, and a dashed
line shows the location of linear envelopes (points below this line correspond to convex
envelopes, while above it the envelopes are concave). (b) Fixed leading edge value A(0)=
0. Note that the thin-plate smoothing is only accurate in regions with a sufficient density
of points.
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FIGURE 8. Definition of the parameters for a Gaussian envelope.

amplitudes at the tail by adjusting the location and width of the peak. Since the
Gaussian envelope is always positive, the entire (x1, δ) space can be used to search
for an optimal gait without running into degenerate gaits.

Figure 9 shows the curvature amplitude for various envelopes. The curvature
amplitude C(x) is given by:

C(x) = max
t

∂2h
∂x2

(x, t)

= a0

√
(A′′ − A(2π/λ)2)2 + (A′2π/λ)2. (3.3)

It can in particular be seen that while the traditional carangiform envelope leads to
a curvature that is minimum at 0.25 from the leading edge and maximum at the
trailing edge. This is very different from the curvature observed in saithe and mackerel
(Videler & Hess 1984). A Gaussian envelope, on the other hand, can lead to a very
small curvature for x < 0.4 with a peak around x = 0.8–0.9. This curvature profile
is in much better agreement with the curvature reported in Videler & Hess (1984).
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FIGURE 9. (a) Deformation and (b) curvature for various quadratic and Gaussian
envelopes. The carangiform envelope is the one defined in (2.4): A(x)= 1− 0.825(x− 1)
+ 1.625(x2 − 1). The optim. quadratic envelop is the most efficient quadratic envelop
identified in figure 7: A(x) = 1 + 3(x − 1) − 2(x2 − 1). The optim. Gauss envelopes are
the most efficient Gaussian envelopes identified for f = 1.5 and f = 2.4 respectively, with
parameters summarized in table 2.

Moreover, the curvature peak corresponds to the peak of the Gaussian, which will
later be referred to as the area where the body deformation is largest.

Figure 10 shows the efficiency as a function of x1 and δ in the neighbourhood of the
optimal envelope (in the sense of requiring minimum input power) for five frequencies
ranging from f = 1.5 to f = 2.7. For all frequencies, the efficiency decreases very
rapidly as δ is decreased below its optimal value, while the efficiency is much less
sensitive to increases above this optimal value. Moreover, while for all frequencies it
is possible to find a region in the (x1, δ) space that reaches an efficiency of 50 % (see
table 2 for details), the optimal envelope clearly depends on the frequency. Note that,
for a given motion, the angle of attack also changes with frequency. Since we hope
to find an efficient angle of attack by optimizing the envelope, it is not surprising that
the optimum is frequency dependent.

At low frequency, gaits with undulations of the entire body (x1= 0.73 and δ= 0.52
at f = 1.5) are most efficient, while at high frequency, the undulations should be
restricted to a narrow region (δ= 0.21 at f = 2.7) located around 25 % of the trailing
edge (x1 = 0.88 at f = 2.7). However, for all frequencies, the optimized deformation
envelope A(x), shown in figure 11(a), is qualitatively similar to the curvature envelope
from Videler & Hess (1984), with a small amplitude at the leading edge, a peak
of amplitude 0.1 located 10 %–30 % from the trailing edge, and a sharp decrease in
amplitude at the trailing edge. The corresponding displacement envelopes g(x) are
shown in figure 11(b). The displacement envelopes are qualitatively similar to the
carangiform displacement envelope from Videler & Hess (1984), with an amplitude
close to g(0)= 0.02 at the leading edge (for from 1.8 to 2.7), a minimum amplitude
around x= 0.25 and a maximum amplitude at the trailing edge.

The similarity between optimized envelopes (both deformation and displacement)
and envelopes observed in fish suggest, while the motion traditionally used to model
carangiform swimming is inefficient, the actual motion of carangiform swimmers
could be close to optimal. It is also interesting to note that, since quadratic envelopes
can only result in functions with a wide peak, they can reach the same efficiency as
the Gaussian envelopes at low frequency ( f = 1.5), but not at high frequency ( f > 2)
where a sharp peak is needed to mitigate the large pitch and angle of attack caused
by fast transverse motion of the tail.
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FIGURE 10. (Colour online) ηQP as a function of x1 and δ near the optimum for Gaussian
envelopes. (a) f = 1.5, (b) f = 1.8, (c) f = 2.1, (d) f = 2.4, (e) f = 2.7, ( f ) colour bar.
The black dots show the location of the points that have been used to build the thin-
plate smoothing spline (tpaps function in Matlab with smoothing parameter p = 0.999)
represented in colour. Note that the thin-plate smoothing is only accurate in regions with
a sufficient density of points.
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FIGURE 11. Optimized (a) prescribed deformation envelopes and (b) displacement
envelopes for the Gaussian parametrization. λ= 1 and f = [1.5, 1.8, 2.1, 2.4, 2.7].

3.2. Characterization of efficient swimming gaits for a two-dimensional fish

We showed in the previous section that, by changing the location and width of the
peak in a Gaussian deformation envelope, a very efficient gait can be designed for a
large range of undulation frequencies.

Figure 12 shows the deformed fish for three optimized gaits. As expected from
figure 11, at f = 1.5 the entire length of the fish undergoes noticeable deformation and
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FIGURE 12. (Colour online) Superimposed body outlines over one undulation period for
three frequencies.

displacement, resulting in a swimming motion that is similar to that of an anguilliform
swimmer, with a moderate curvature along the entire body: the deformation of the
fish matches the large wavelength trajectory of the trailing edge and thus avoids the
efficiency loss associated with a large angle of attack. At higher frequency, the front
half of the fish undergoes virtually no deformation, resulting in a swimming motion
very similar to a carangiform ( f = 2.1) or even a thunniform ( f = 2.7) swimmer. At
this frequency, the region that would correspond to the peduncle deforms with a very
large curvature caused by the sharp peak in the Gaussian envelope. This allows the
deformation of the fish to match the small wavelength trajectory of the trailing edge
and thus avoid the efficiency loss associated with a large angle of attack.

Figure 13 shows the deformed fish and vorticity snapshots for the five optimized
gaits at t/T = 0 (mod 1), where T = 1/f is the undulation period. With a Gaussian
deformation envelope, a peak width specifically tailored to the undulation frequency
allows for reduced angle of attack at all frequencies. Specifically, as the undulation
frequency increases, the angle of attack at the trailing edge, induced by the tail
displacement increases. In order to recover a small and efficient angle of attack, the
(already negative) slope of the deformation envelope must be decreased, which can
only be done by a sharper peak. As for thrust-producing flapping foils, a reverse
Kármán vortex street forms in the wake. The width and wavelength of the reverse
Kármán vortex street decreases with increasing undulation frequency, and secondary
small vortices develop at low frequency.

Table 2 summarizes the parameters and properties of the five optimized gaits. The
quasi-propulsive efficiency ηQP of these undulatory gaits is of prime interest. The
efficiency reaches 57 % for f = 2.7, whereas the least efficient frequency, f = 1.5,
reaches ηQP = 49 %. Another important parameter is the Strouhal number, which
is close to St = 0.35. The consistency of the Strouhal number for the optimized
envelopes across frequencies suggests that, for a given Reynolds number, there exists
an optimal Strouhal number that can be reached with a large range of frequencies.
Like the Strouhal number, the maximum pitch angle θmax and maximum angle of
attack αmax are almost constant across the five optimized gaits, with a value close
to θmax = 31◦ and αmax = 17◦. The corresponding phase angle between the heave and
pitch of the trailing edge is ψ = 82◦. The results from this optimization show that,
as in rigid flapping foils, the efficiency of undulating fish is primarily driven by the
Strouhal number, angle of attack, heave motion (or pitch motion) and heave–pitch
phase angle, all at the trailing edge. The optimal Strouhal number, pitch angle and
angle of attack can be attained by tuning the envelope peak for each frequency.

Figure 14 shows the pressure field and body velocity for the optimized envelopes
with frequency f = [1.5, 2.1, 2.7] at their respective time of minimum and maximum
power. For f = 1.5 (figure 14a,b) and f = 2.7 (figure 14e, f ), there are three distinct
sections along the upper side of the fish: high pressure near the leading edge, low
pressure in the middle and high pressure near the trailing edge (and the opposite
on the other side). In figures 14(b), 14( f ), these sections almost exactly match
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FIGURE 13. Snapshots of vorticity for optimized gaits at t/T = 0 (mod 1). (a) f = 1.5,
(b) f = 1.8, (c) f = 2.1, (d) f = 2.4, (e) f = 2.7, ( f ) colour bar.

f x1 δ a0 a θmax (deg.) αmax (deg.) ψ (deg.) St CP ηQP

1.5 0.73 0.52 0.084 0.23 31 17 82 0.34 0.093 0.49
1.8 0.77 0.36 0.066 0.18 28 19 82 0.33 0.089 0.52
2.1 0.81 0.28 0.062 0.16 29 20 81 0.35 0.087 0.53
2.4 0.87 0.23 0.079 0.15 35 16 82 0.37 0.083 0.56
2.7 0.88 0.21 0.073 0.13 34 15 84 0.36 0.081 0.57

TABLE 2. Parameters and properties of gaits with optimized Gaussian envelopes. Motion
parameters are the frequency f , peak location x1, peak width δ and amplitude a0. Properties
are the peak to peak displacement amplitude at the trailing edge a, maximum pitch angle
at the trailing edge θmax, maximum angle of attack αmax, heave and pitch phase angle ψ ,
Strouhal number St, time-averaged power coefficient CP and the quasi-propulsive efficiency
ηQP.

transverse velocity of respectively positive, negative and positive sign, resulting in
very large instantaneous swimming power. Conversely, in figure 14(a,e), the sign
of the transverse velocity is reversed, resulting in a significant negative swimming
power. For f = 2.1, the pressure changes along the fish are smaller, and the pressure
is close to zero along a large portion of the fish. Moreover, unlike for f = 2.7, the
sign changes in pressure do not match the sign changes in transverse velocity. For
instance, at t/T = 0, the pressure along the bottom side of the fish near the trailing
edge is positive (not shown here), which would result in a positive swimming power.
Therefore, the minimum power is reached at a later time t/T = 0.12, at which point
the amplitude is largest in areas where the pressure is close to zero, resulting in a
very small power. Similarly, the maximum power reached at t/T = 0.34 is not as
large as for f = 2.7 because the sections of high pressure do not exactly match the
sections of large transverse velocity.
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FIGURE 14. Snapshots of pressure field with arrows showing the body velocity. (a,b)
Optimized Gaussian envelope at f = 1.5; (c,d) optimized Gaussian envelope at f = 2.1;
(e, f ) optimized Gaussian envelope at f = 2.7. (a,c) t/T = 0.12 (mod 1) (minimum power
for f = 1.5 and f = 2.1); (e) t/T = 0 (mod 1) (minimum power for f = 2.7); (b,d)
t/T = 0.34 (mod 1) (maximum power for f = 1.5 and f = 2.1; ( f ) t/T = 0.29 (mod 1)
(maximum power for f = 2.7).

It must be pointed out that there are additional parameters affecting the efficiency
of an undulating fish, since the efficiency ranges from ηQP= 0.49 at f = 1.5 to ηQP=
0.57 at f = 2.7. This trend runs contrary to results from Shen et al. (2003) who
found that a slip ratio around sr = 0.8 ( f = 1.2) is optimal for a body undergoing
travelling wave motion of constant amplitude, in order to reduce separation effects and
turbulence intensity. In our case, however, these results do not strictly apply because
the undulations have a non-constant envelope, and especially for higher frequency are
confined to a small section of the fish.

3.3. Application to a three-dimensional danio-shaped swimmer
We have so far modelled a fish by a two-dimensional fish-like flexible foil. However,
fish have a highly three-dimensional geometry. In particular, most carangiform and
thunniform swimmers are characterized by a region of reduced depth, around 20 %
from the trailing edge, the peduncle. In order to model this region of reduced added
mass with a two-dimensional geometry, it might be more appropriate to model a fish
with a separate foil for the tail, as illustrated in figure 15. The fish model shown in
this figure undulates with the optimized gait at frequency f = 2.4 identified earlier,
and the performance (ηQP = 0.54) is very close to that obtained with a single foil,
indicating that the results are robust to changes in the geometry.

In the rest of this section, we consider a simplified three-dimensional fish shape,
shown in figure 2, which is based on a giant danio (Devario aequipinnatu). For
this geometry, we fix the undulation frequency to f = 2.4 and optimize a Gaussian
envelope for quasi-propulsive efficiency (for a fixed swimming speed Us, we minimize
the expended power Pin). In figure 16 we compare how ηQP changes with the envelope
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FIGURE 15. Snapshot of the vorticity field around a two-dimensional fish with a separate
tail fin.
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FIGURE 16. ηQP as a function of x1 and δ near the optimum for (a) 2-D and (b) 3-D
geometries with f = 2.4. The black dots show the location of the points that have been
used to build the thin-plate smoothing spline (tpaps function in Matlab with smoothing
parameter p= 0.999). Note that the thin-plate smoothing is only accurate in regions with
a sufficient density of points.

parameters x1 and δ for a two-dimensional fish and for the three-dimensional shape.
The efficiency is generally lower with the three-dimensional shape, but the dependence
on x1 and δ is very similar for both geometries: the most efficient gaits are for
0.8< x1 < 0.9 and 0.2< δ < 0.3 with a sharp decrease in efficiency for δ < 0.2. This
shows that, even though three-dimensional effects reduce the swimming efficiency,
most of the conclusions about BCF swimming drawn from the two-dimensional study
extend to three-dimensional shapes.

The parameters and properties of the optimized gait for f = 2.4 are compared to
those of the carangiform gait Ac(x) in table 3. Like in the 2-D case, the optimization
decreases the power consumption by 50 % compared with the carangiform gait. As
in two dimensions, the optimized gait manages to bring the phase angle between the
heave and pitch motion of the trailing edge close to 90◦, which significantly reduces
the angle of attack. As a result, the optimized gait for the three-dimensional fish shape
have a pitch angle, phase angle and angle of attack very close to the optimized gait for
the two-dimensional fish. However, since the 3-D effects reduce the thrust produced
by the undulating motion, the Strouhal number is higher than in two dimensions,
especially for the carangiform gait.

Figure 17 shows the deformation envelope A(x) and the displacement envelope
g(x) for the carangiform gait at f = 3 and for the optimized gait. Similarly to
the observations made for the two-dimensional body shape, the optimal gait has
maximum displacement at the trailing edge, but maximum deformation (curvature)
around x= 0.85, which corresponds to the peduncle.
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FIGURE 17. Prescribed deformation envelope a0A(x) and displacement envelope g(x) for
(a) carangiform gait with f = 3 and (b) optimized gait with f = 2.4. Frequencies have been
selected such that the displacement amplitude at the trailing edge is the same.
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FIGURE 18. (Colour online) Superimposed body outlines over one undulation period for
(a) the carangiform motion and (b) the optimized gait.

f x1 δ a0 a θmax (deg.) αmax (deg.) ψ (deg.) St CP ηQP

3.0 carangiform 0.099 0.18 34 41 59 0.53 0.035 0.22
2.4 0.84 0.26 0.085 0.18 37 17 87 0.43 0.023 0.34

TABLE 3. Parameters and properties of 3-D undulating gaits. Properties are the peak to
peak displacement amplitude at the trailing edge a, maximum pitch angle at the trailing
edge θmax, maximum angle of attack αmax, heave and pitch phase angle ψ , Strouhal
number St, time-averaged power coefficient CP and the quasi-propulsive efficiency ηQP.
The optimized gait at f = 2.4 is compared to the carangiform gait at f = 3, for which
the amplitude at the trailing edge is the same.

The superimposed body outlines for the optimized gait shown in figure 18(b) also
look very similar to the body outlines of the optimized motions in two dimensions:
the deformation of the tail follows the trajectory of the trailing edge, resulting in an
efficient low angle of attack. The body outlines for the carangiform motion, on the
other hand, show that the pitch of the tail is out of phase with its velocity (phase
angle far from 90◦), which results in a very inefficient gait, with a large angle of
attack.

Finally, we show the flow structure around the 3-D fish model for both gaits in
figure 19. The performance difference between the two gaits is accompanied by
noticeable differences in the wake structure of the two swimmers. For both gaits,
figures 19(a) and 19(b) show wakes comprised of two interconnected vortex loops
per cycle, together with other smaller structures. In particular, the structure in the
wake of the optimized motion is complex, with many vortex tubes interlaced with
each other. Indeed, as can also be seen in the vorticity field at z= 0 (figure 19d), the
deformation at the peduncle is quite large for the optimized gait, resulting in vortex
tubes separating from the main body and then interacting with the structures shed
from the tail.
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FIGURE 19. Snapshots of the flow around a three-dimensional fish with (a,c,e,g) a
carangiform and (b,d, f,h) an optimized gait. (a,b) Three-dimensional vortical structures
visualized using the λ2-criterion; (c,d) z component of the vorticity in the z = 0 plane;
(e, f ) pressure in the z= 0 plane; (g,h) pressure in the z= 0.06 plane.

Borazjani & Sotiropoulos (2010) also observed in their 3-D simulations that
the 2-D wake structure, dominated by a single vortex pair (or ring in three
dimensions), transitions to vortex loops wrapping around each other for Strouhal
number greater than St = 0.3. Dong, Mittal & Najjar (2006) showed that the same
phenomenon happens to elliptical flapping foils of finite aspect ratio: at low aspect
ratio/large Strouhal number, two vortex rings are shed each cycle. As the aspect
ratio increases or the Strouhal number decreases, the tip vortices do not merge
together any more and the wake consists of interconnected loops. As the Strouhal
number further decreases or the aspect ratio increases, the three-dimensional effects
become even weaker and the linkage between tip vortices disappears. At this point,
the 3-D wake looks similar to the (reverse) Kármán vortex street observed in two
dimensions.

In the carangiform example shown here, the tip vortices merge, while with the
optimized gait, which has a lower Strouhal number and angle of attack, they do not.
At higher Reynolds number, the Strouhal number would be smaller and a wake similar
to that observed in two dimensions would probably emerge. Figure 19(c,d) shows that,
near the tail, the vorticity in the z= 0 plane looks very similar to that behind a 2-D
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FIGURE 20. (a,c,e) Side view and (b,d, f ) top view of the vortex structures at several
time steps for the carangiform gait. (a,b) t/T = 0.1 (mod 1); (c,d) t/T = 0.4 (mod 1);
(e, f ) t/T = 0.7 (mod 1). A red line shows the formation of a vortex ring.

foil. However, under the influence of the tip vortices, the vortex sheets shed by the
tail do not evolve into two strong vortices as in two dimensions. As a result, whereas
the pressure field around the undulating fish-like shape is very similar to the pressure
around an undulating airfoil, the pressure signature in the wake shown at the plane
z=0 is very weak (figure 19e, f ). However, the pressure signature in the plane z=0.06,
just above the peduncle, is much stronger (figure 19g,h), and could potentially be used
by a downstream fish to reduce its swimming energy.

Figure 20 shows a magnified view of the vortex structures generated by the
carangiform motion. A red line shows the formation of a clear vortex ring at the
trailing edge of the tail between figures 20(a) and 20(c). In figure 20(e), the vortex
ring is fully formed and detached from the tail. Since the vortex rings are oblique,
they produce a large transverse velocity, which is inefficient and results in waste
of energy. We also see a spanwise narrowing of the vortex rings as they convect
downstream, as also observed in the simulations of Blondeaux et al. (2005) and
Dong et al. (2006) for a respectively rectangular and elliptical pitching and heaving
foil.

Figure 21 shows a magnified view of the vortex structures generated by the
optimized gait. The structure of the wake is more intricate than for the carangiform
motion. In particular, instead of one set of interconnected vortex tubes, there are two
sets of tubes, marked in red and green in the figure. The loop marked in red is the
same as observed for the carangiform gait, but at this lower Strouhal number, it never
fully closes into a clearly defined vortex ring. The tubes marked in green are formed
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FIGURE 21. (a,c,e) Side view and (b,d, f ) top view of the vortex structures at several
time steps for the optimized gait. (a,b) t/T = 0.1 (mod 1); (c,d) t/T = 0.4 (mod 1); (e, f )
t/T = 0.7 (mod 1). A red line shows a vortex shed from the tail that never fully develops
into a ring, while green lines show the vortices shed from the body.

upstream of the tail and are shed from the body as a result of the large curvature
at the peduncle. The resulting vortex tubes are interlaced with the vortex loops from
the tail with which they have a phase difference of close to 180◦.

For a three-dimensional fish shape with two-dimensional undulation, as for a
two-dimensional foil, the Strouhal number, pitch angle (or heave motion), nominal
angle of attack and phase angle at the trailing edge are the primary parameters
for efficient swimming. The key is to decrease the (already negative) slope of the
deformation envelope in order to reduce the angle of attack to efficient values. These
two-dimensional considerations only depend on fish geometry through its impact on
recoil. Moreover, the optimization leads to a lower Strouhal number and angle of
attack, which reduces the three-dimensional effects observed behind the non-optimized
gait, such as formation of inefficient oblique vortex ring chains. With the optimized
gait, the production of thrust is also distributed between the body and the tail, which
sheds vortex structures with opposite phase. It has been shown with turbines, for
instance, that distributing the thrust production (or energy capture) could significantly
improve the efficiency, and it is possible that fish use the same process. Finally, while
we used a simplified fish geometry with a two-dimensional undulation, fish can also
rely on three-dimensional motion of their dorsal and pectoral fins to fine tune their
swimming motion and save energy (Drucker & Lauder 2001; Lauder & Madden
2007).



www.manaraa.com

Optimal undulatory swimming 323

4. Energy saving for two fish swimming in close proximity
The experimental study by Gopalkrishnan et al. (1994) and the theoretical study by

Streitlien, Triantafyllou & Triantafyllou (1996) demonstrated that flapping rigid foils
placed within a Kármán street can extract significant energy from the flow through
vorticity control. Subsequently, it was documented that live fish swimming within a
Kármán vortex street formed behind a cylinder tend to synchronize their motion to
the oncoming cylinder vortices. This allows them to significantly reduce the energy
spent to hold station (Liao et al. 2003a,b; Akanyeti & Liao 2013), or even generate
propulsive force with no input power as evidenced by the passive propulsion of
anaesthetized fish (Beal et al. 2006). The phenomenon of fish Kármán gaiting has
been explained by the faculty of fish to sense and harness the energy of the vortices.

Since a foil or a fish can extract energy from the vortices in a Kármán street, in
principle there is no reason why they could not extract energy from the vortices in a
reverse Kármán street. Boschitsch, Dewey & Smits (2014) recently showed that the
net propulsive efficiency of a pitching foil located behind a similarly pitching foil
could be anywhere between 0.5 and 1.5 times that of an isolated foil, depending
on the phase. This indicates that the energy extracted from the vortices in a reverse
Kármán street more than compensates for the effect of increased drag caused by the
jet forming in a reverse Kármán street (unlike the energetically beneficial drag wake
forming behind a bluff body). Despite the strong evidence that it is possible to harness
the energy of individual vortices within a reverse Kármán street, there is no conclusive
evidence that fish actually do harness this energy. Liao summarizes in his review
of fish swimming in altered flows that no hydrodynamic or physiological data exist
to evaluate the hypothesis that fish can increase swimming performance by taking
advantage of the wake of other members (Liao 2007).

Due to the difficulty of experimentally measuring the swimming power of individual
fish in a school, simulations can provide valuable information to help clarify this issue.
Hence, we consider next a pair of self-propelled undulating fish-like foils. We have
shown in the previous section that a two-dimensional fish, undulating in open water,
can attain a quasi-propulsive efficiency of 57 % by optimizing its gait. The goal in
this section is to determine whether, by working as a pair, fish can further reduce
the power required to travel at constant speed Us. Indeed, a few recent computational
studies have yielded compelling evidence that fish can take advantage of certain
physical mechanisms to swim more efficiently in a school (Deng & Shao 2006;
Daghooghi & Borazjani 2015; Hemelrijk et al. 2015). It is assumed that both fish
swim with the same undulation frequency and deformation envelope, each with the
amplitude that allows it to swim at the desired speed. For a given frequency, the
deformation envelope is the optimal envelope in open water identified in table 2.
Efficiency might be further increased by using a specific schooling gait, but this is
beyond the scope of this paper.

4.1. Flow in the wake of a self-propelled undulating fish
The reverse Kármán vortex street behind a self-propelled undulating fish is character-
ized by its periodic structure, with vortices moving parallel to the y = 0 axis in
stable formation. The vorticity snapshot in figure 22(a) shows that the vortices
decrease in strength under the effect of diffusion, but this is a slow process and
the wake is primarily characterized by its periodicity. Figure 22(b) shows that the
vortices generate patches of faster flow along the y = 0 axis and slower flow away
from the centreline. The time-averaged flow (figure 22c,d) is characterized by four
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FIGURE 22. Wake behind a self-propelled undulating fish for the optimized gait with
Gaussian envelope and λ = 1 at frequency f = 1.5. (a) Instantaneous vorticity field; (b)
instantaneous x-velocity field; (c) time-averaged vorticity field; (d) time-averaged x-velocity
field.

shear layers of alternating sign, resulting in a jet along the centreline with strips
of slowed-down flow on either side; consistent with the momentumless wake, on
average, of a self-propelled body (Triantafyllou et al. 1993).

The vorticity at longitudinal distance d from the trailing edge in the wake of an
undulating fish can be modelled as:

ω(d, y, t)=ωy(y, t)ωd(d) sin(2π(φ1(d)− ft)), φ1(d)= d/λw + φw, (4.1)

where the frequency f is given by the undulation frequency and the wavelength λw
and phase φw of the wake need to be determined. For the five optimized gaits with
Gaussian envelope and λ= 1 presented in § 3.1, we estimated from the vorticity field
the phase φ1 at several distances d along the wake. In figure 23(a) we show the phase
φ1 as a function of the distance d, as well as the least squares linear fit for each
swimming gait. The coefficients for the linear fit are summarized in table 4. For all
the gaits, the phase is essentially proportional to the distance d, with a coefficient of
proportionality very close to the undulation frequency f . Since λw = fcw, where cw is
the speed at which the vortices travel in the wake, this result shows that the vortices
travel at the same speed as the free stream. Moreover, for the five gaits considered,
the phase at d= 0 is approximately 0.25, which means that the vortices are shed by
the fish when the trailing edge has maximum transverse velocity. Finally, we confirm
these observations by plotting φ1 as a function of fd in figure 23(b). Assuming cw= 1,
the least squares estimate (± standard deviation) of the phase φw is:

φw = 0.24± 0.02. (4.2)

From now on, λw = 1/f and φw = 0.25 will be used to estimate the phase φ1
encountered by a downstream fish whose leading edge is located at distance d from
the upstream fish.

4.2. Effect of phase and distance for two fish in line
Here we consider two fish-like foils following each other and undulating at frequency
f = 1.5 with the optimized gait for this frequency, as illustrated in figure 25.
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FIGURE 23. Vorticity phase in the wake of self-propelled undulating fish as a function of
(a) distance, d, and (b) frequency times distance, fd. For each frequency, the optimized
gait with Gaussian envelope is used.

Gait parameters φ1 linear fit cw = 1

f x1 δ 1/λw φw φ1 − fd

1.5 0.73 0.52 1.52 0.19 0.22
1.8 0.77 0.36 1.77 0.26 0.24
2.1 0.81 0.28 2.07 0.30 0.26
2.4 0.87 0.23 2.37 0.29 0.26
2.7 0.88 0.21 2.65 0.29 0.25

TABLE 4. Parameters of the gaits used in the wake vorticity phase estimate and fitted
phase and wavelength for the vorticity in the wake. An estimate of the phase φw assuming
a phase speed cw = λw/f = 1 is also provided.

The amplitude of undulation, a0, is adjusted independently for each fish to ensure that
both fish are in a stable position and produce zero net thrust on average. We vary the
distance d between the trailing edge of the upstream fish and the leading edge of the
downstream fish, as well as φ, the phase of the downstream fish motion as defined in
(2.1). An important parameter will be 1φ, the phase difference between the motion
of the downstream fish leading edge and the vortices it encounters: 1φ = φ − φ1(d).
In order to measure the impact of the pair configuration on each fish, we define
R(CP) (respectively R(a0)), the ratio of the power coefficient (respectively amplitude)
in the pair configuration over the power coefficient (respectively amplitude) for the
corresponding gait in open water.

Since the goal is to minimize expended power, R(CP) is what should be minimized.
However, it is interesting to determine whether a reduction in expended power results
from a reduction in drag or from a pure reduction in swimming power. Since both
fish are self-propelled, the drag is always zero, so the net drag on the fish cannot be
used as an indicator of drag reduction. Instead we use the swimming amplitude as
an indicator of drag: fish swim in order to overcome drag; if drag is reduced, then a
smaller swimming motion will be sufficient to overcome the drag.

Both fish can benefit from swimming in pair, but the trends are very different. The
swimming power and amplitude of the upstream fish is virtually independent of the
phase of the downstream fish, as shown in figure 24(a). For large separations d, the
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FIGURE 24. Time-averaged power coefficient CP and amplitude a0 for (a) the upstream
fish as a function of distance d and (b) the downstream fish as a function of phase 1φ.
The solid (respectively dashed) line marks the average value with respect to the phase
(respectively distance) and the shaded area indicates the range of values reached across
the various distances (respectively phases).
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FIGURE 25. Snapshot of the vorticity field for two fish undulating at f = 1.5 with
separation distance d = 1 and optimal phase 1φ = 0.83 at time t/T − φ = 0.25 (mod 1).
The colour axis is the same as in figure 13.

downstream fish does not impact the upstream fish whose efficiency is then almost
the same as in open water. However, as the downstream fish gets close (d< 0.5), the
high pressure around the leading edge of the downstream fish ‘pushes’ the upstream
one, regardless of their phase difference. As a result, the upstream fish can reduce
its swimming amplitude, expending less power than it would in open water. At d =
0.25, the undulation amplitude is reduced by 10 %, resulting in 28 % energy saving,
corresponding to a quasi-propulsive efficiency (based on the towed drag in open water)
of ηQP = 69 %.

For the downstream fish, the situation is very different. Even when the upstream
fish is several chord lengths ahead, the downstream fish encounters its wake. The
performance of the downstream fish is determined by its interaction with the vortices
of the wake. It appears from figure 24(b) that the swimming power of the downstream
fish depends primarily on the phase difference 1φ between its undulation and the
encountered vortices. Regardless of the distance d, the swimming power of the
downstream fish is low if 1φ is between 0.7 and 1, and it is high if 1φ is between
0.1 and 0.5. As for the upstream fish, the reduced swimming power is the result of
a reduced undulation amplitude a0 but, for the downstream fish, the reduction in CP
is weaker than the reduction in amplitude. A maximum energy saving of 24 % is
reached at 1φ = 0.85, corresponding to an efficiency of ηQP = 65 %.

Figure 25 shows the vorticity field around the two fish undulating with frequency
f = 1.5 at distance d = 1 for the phase 1φ = 0.83, close to the minimum amplitude
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FIGURE 26. Snapshot of the velocity and pressure field for two fish undulating at f =
1.5 with separation d= 1 and optimal phase 1φ = 0.83. (a,b) x-velocity; (c,d) y-velocity;
(e, f ) pressure and arrows showing the velocity of the fish. (a,c,e) Upstream fish at t/T =
0.25 (mod 1); (b,d, f ) downstream fish at t/T − φ = 0.25 (mod 1). The same colour axis
as in figure 14 is used for the pressure, and the same as in figure 22(b) is used for the
velocity (centred in 0 for the y-velocity).

and power coefficient. At t/T −φ= 0.25, the downstream fish approaches the negative
vortex (at x=−0.1 on its left) as it is initiating the rotation of its ‘head’ (leading edge)
to the right. This acceleration of the head causes a low pressure on the left side of the
head, as shown in figure 26(e). Due to its position, the approaching negative vortex
causes an increase in the longitudinal velocity, as shown in figure 26(b), which results
in an increased stagnation pressure (figure 26f ). However, this vortex also generates
a large transverse velocity with negative sign, as shown in figure 26(d). As a result,
the effects of the head motion are amplified by the incoming vortex, displacing the
stagnation point downstream on the right side and deepening the low pressure on
the left side (figure 26f ). While the energy required by the fish to rotate its head is
increased, the drag is decreased, despite the faster flow encountered by the fish.

At the same time, the positive vortex located at x = 0.2 on the right side of the
fish thickens the boundary layer and significantly accelerates the flow in a region
where the fish undulation already accelerates it (figure 26a,b). This interaction between
the vortex and the fish results in a very large pressure drop around x = 0.3 that
also contributes to the reduction in drag while increasing the swimming power. The
vortices are convected downstream at a speed which is substantially lower than the
phase speed of the fish deformation. Further downstream, the distance between the
vortices and the fish increases, and their interaction becomes weaker. At the trailing
edge, the phase between the vortices and the fish motion is close to π, such that
the positive vortex reaches x = 1 as the trailing edge of the fish is at its leftmost
position. This vortex will be shed just downstream of the same sign vortex shed by
the upstream fish. The resulting wake configuration is unstable and it takes several
body lengths for the wake to reorganize into two pairs of opposite sign vortices per
cycle.
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FIGURE 27. (Colour online) Ratio of (a) amplitude and (b) power coefficient as a function
of frequency f and phase 1φ for two fish swimming in line at distance d= 1. The ratios
are defined with respect to the corresponding gait in open water. The black dots show the
location of the points that have been used to build the thin-plate smoothing spline (tpaps
function in Matlab with smoothing parameter p= 0.999) represented in colour. Note that
the thin-plate smoothing is only accurate in regions with a sufficient density of points.

The results presented in this section are consistent with the experimental results
from thrust-producing rigid pitching foils in an in-line configuration (Boschitsch et al.
2014). We found that for small separation distance the propulsive efficiency of the
upstream fish is greatly improved thanks to drag reduction. We also showed that the
efficiency of the downstream fish only weakly depends on the separation distance, the
primary parameter being the phase difference between the wake from the upstream
fish and the undulating motion of the downstream fish. If the undulation amplitude
was fixed, the downstream fish would experience an increased drag and decreased
power for 0 61φ 6 0.5, whereas it would experience a decreased drag and increase
power for 0.561φ 6 1. For a self-propelled fish, the energetic benefits of a reduced
amplitude resulting from a reduced drag overcome the power increase caused by the
vortices.

4.3. Effect of frequency for two undulating fish in line
Next, we fix the distance between the two fish to d = 1 and vary their undulation
frequency. For frequencies f = [1.5, 1.8, 2.1], their optimized Gaussian envelope is
used, for which the parameters are summarized in table 4. Figure 27 shows that
most of the conclusions drawn in § 4.2 still hold as the undulation frequency is
increased. While the upstream fish is mostly unaffected by the presence and phase of
the downstream fish, the undulation amplitude of the downstream fish is largest for
061φ6 0.5 and smallest for 0.561φ6 1. However, the exact value of the optimal
phase depends on the frequency, and the correlation between amplitude and power
coefficient becomes weaker as f increases. For instance, at f = 2.1, the amplitude is
minimum for 1φ= 0.85, but the power coefficient is minimum for 1φ= 0. Whereas
with f = 1.5 most phases result in an increased amplitude and power coefficient,
with f = 1.8 and f = 2.1, the amplitude and power coefficient of the downstream
fish never exceed that of the upstream fish. Therefore, at these frequencies, it is
always beneficial to swim in the wake of an undulating fish, despite the jet-like flow
encountered in this area.

At frequency f = 1.8, the results for the optimal phase, shown in figure 28, are very
similar to those described in the previous section for f = 1.5, with the vortices from
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FIGURE 28. Snapshot of the vorticity, velocity and pressure field for two fish undulating
at f = 1.8 with separation distance d = 1 and optimal phase 1φ = 0.87. (a,b) Vorticity;
(c,d) x-velocity; (e, f ) y-velocity; (g,h) pressure and arrows showing the velocity of the
fish. (a,c,e,g) Upstream fish at t/T = 0.25 (mod 1); (b,d, f,h) downstream fish at t/T −φ=
0.25 (mod 1). The same colour axis as in figure 14 is used for the pressure, and the same
as in figures 22(a) and 22(b) for vorticity and velocity (centred in 0 for the y-velocity).

the upstream fish reinforcing the effects of the body undulation. However, the wake at
this frequency is narrower; therefore the vortices are closer to the fish and they lose
more strength through their interaction with the boundary layer. Moreover, since the
distance between two consecutive vortices is proportional to the undulation frequency,
the vortices are spaced closer to each other. The resulting wake is dominated by two
single vortices shed by the downstream fish, each accompanied by weaker vortices
of opposite sign from the upstream fish. This is identical to the destructive vortex
interaction mode of a flapping foil within a Kármán street in Gopalkrishnan et al.
(1994), which has been associated with increased efficiency.

Figure 29 illustrates the case of the downstream fish undulating with the phase
providing the worse swimming efficiency for f = 1.8. In this configuration, the
vortices from the upstream fish counteract the effects of the undulating motion of
the downstream fish. As the fish turns its head to the right, displacing the stagnation
point to the right and causing a low pressure on the left side of the head, the positive
y-velocity caused by the approaching positive vortex has the opposite effect. The
high velocity caused by the vortices along the fish cancels the low velocity from the
undulating motion. Finally, when the vortices from the upstream fish reach the trailing
edge, they merge with the same sign vortices from the downstream fish. The resulting
wake is very stable and is a classical reverse Kármán vortex street much wider than
the one behind a single fish. This corresponds precisely to the constructive interaction
mode of a flapping foil within a Kármán street in Gopalkrishnan et al. (1994), which
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FIGURE 29. Snapshots of (a) vorticity, (b) x-velocity and (c) pressure field for two fish
undulating at f = 1.8 with separation distance d = 1 and phase 1φ = 0.38 at t/T − φ =
0.25 (mod 1). The same colour axis as in figure 22(a) is used for the vorticity and the
same as figure 14 for the pressure.
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FIGURE 30. Snapshot of the vorticity field for two fish undulating at f = 2.1 with
separation distance d = 1 and phase 1φ = 0. The same colour axis is used as in
figure 22(a).

has been shown to have reduced efficiency. Note that here the organization of the
vortices cannot be used to quantify the momentum in the wake, since the total
momentum is zero for a self-propelled body, but can be used to quantify the energy
shed in the wake.

As the frequency increases further, the vortices from the upstream fish lose even
more energy through interaction with the boundary layer of the downstream fish;
therefore for each period of oscillation the wake behind the two fish contains a
pair of single vortices, as shown in figure 30. Moreover, since the efficiency of the
downstream fish mostly depends on the phase of the leading edge with respect to the
arrival of the upstream fish reverse Kármán street vortices, the phase of the trailing
edge with respect to the incoming vortices in the optimal configuration changes with
frequency.

For all the frequencies considered here, a self-propelled fish can save energy
by undulating behind another self-propelled fish undulating at the same frequency,
reaching efficiencies close to ηQP = 70 %. When the motion of the downstream fish
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FIGURE 31. Ratio of undulation amplitude a0 and time-averaged power coefficient CP as
a function of phase for two fish undulating at f = 1.5 with longitudinal separation distance
d= 1. In-line fish and fish at an offset 1y= 0.17 are compared.

is phased appropriately with respect to the incoming vortex street, the vortices can
reinforce the effect of the undulation. Whereas for a fixed amplitude this phase would
result in an increased swimming power, the reduction in drag results in an overall
decreased swimming power.

4.4. Fish undulating in the reduced velocity region of the wake
We have so far considered the case of a pair of fish swimming in an in-line
configuration. Since our fish model has a feedback controller ensuring its stability
in y, it is also possible to impose an asymmetric configuration with an offset in the
y direction. Indeed, according to Weihs’ theory (Weihs 1973), the only way for a
fish to save energy in a school is to swim in the region of reduced velocity located
between two wakes. We have already shown that a fish can reduce its drag and save
energy by swimming directly in the wake of another self-propelled fish and will
now investigate if additional savings are possible by swimming in areas of reduced
flow velocity. Figure 22(d) shows that, even with a single fish upstream, the flow on
either side of the wake is slower than the free stream: for f = 1.5 the average flow
is slowest at y = ±0.17. With the downstream fish offset from the upstream fish by
1y= 0.17, we vary the phase difference 1φ in order to see if the downstream fish
can also save energy when swimming at this location.

Figure 31 shows that, even when the downstream fish is offset from the vortex
street, its swimming performance greatly varies with the phase. However, it is easier
for the fish to save energy in this region of reduced flow velocity than directly behind
the upstream fish. Directly behind the upstream fish, only 30 % of the phases result
in energy savings, and by using the unsteadiness of the wake, the quasi-propulsive
efficiency at f = 1.5 can be brought up from 50 % to 60 %. When undulating in the
region of reduced flow velocity, it is easier to save energy since over 70 % of the
phases result in energy savings. The energy savings can even be very large since
ηQP = 80 % is possible for 1φ = 0.65.

Figure 32 shows that, at the optimal phase, the leading edge of the downstream
fish reaches its leftmost position at the same time as it reaches a positive vortex.
Figure 33(b) shows that the leading edge of the downstream fish exactly passes
through the region where the longitudinal velocity is smallest. As a result, the
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FIGURE 32. Snapshot of the vorticity field for two fish undulating at f = 1.5 with
longitudinal separation distance d= 1, transverse separation 1y= 0.17 and optimal phase
1φ = 0.65 at time t/T − φ = 0.1 (mod 1). The colour axis is the same as in figure 13.
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FIGURE 33. Snapshot of the (a,b) x-velocity and (c,d) pressure field for two fish
undulating at f = 1.5 with longitudinal separation distance d = 1, transverse separation
dy = 0.17 and optimal phase 1φ = 0.65. (a,c) Upstream fish, t/T = 0.1 (mod 1); (b,d)
downstream fish, t/T − φ = 0.1 (mod 1). The same colour axis as in figure 14 is used
for the pressure, and the same as in figure 22(b) for the velocity.

stagnation pressure is greatly reduced (figure 33d). Moreover, the region of accelerated
flow between the negative vortex and the fish (x = 0.4) reinforces the accelerated
region caused by the undulation, which we showed earlier is beneficial.

5. Discussion
5.1. Optimal BCF propulsion and the role of fish shape

The total lateral displacement of a live swimming fish is maximum at the trailing edge,
but, once recoil is subtracted, it becomes apparent that the body deformation is largest
around the peduncle. We show that efficiency indeed improves when the envelope of
the body deformation is largest upstream of the trailing edge, separating the main body
from a region that has roughly the length of the caudal fin. The high curvature of the
peduncle region allows the (equivalent) caudal fin area to pitch independently from the
motion of the body, in order to control the timing of trailing edge vortex shedding.
As the peak of the Gaussian describing the fish bending motion becomes sharper,
the curvature imposed by the envelope in the peduncle section becomes much larger
than the curvature caused by the travelling wave. This is particularly noticeable for
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f = 2.7, at which frequency the undulations are mostly restricted to what would be
the peduncle and tail sections for a fish.

The increase of the curvature in the peduncle region corresponding with a
decreased stride length and increased swimming frequency is essential, allowing the
instantaneous deformation of the fish to match the trailing edge trajectory (figure 12).
This serves to avoid the efficiency loss associated with a large angle of attack at the
tail and a reverse Kármán vortex street forms in the wake, consistent with previous
studies of efficient thrust production in oscillating foils (Triantafyllou et al. 1991;
Anderson et al. 1998). The width and wavelength of the reverse Kármán vortex street
decreases with increasing undulation frequency, and secondary small vortices develop
at low frequency.

Fish employing the carangiform and thunniform swimming modes generally have
a narrow peduncle, and our results suggest that there is function associated with this
form. The narrow peduncle allows for sharp bending of the tail, even at an angle
with respect to the body deformation (providing a discontinuous slope), such as in
the optimal motion at high frequency. Tunas, for example, have a special anatomy at
the peduncle that allows powerful tendons to actuate the tail with substantial torque.
This allows for the independent control of the tail in manipulating vorticity formed
upstream of the tail along the body (Zhu et al. 2002) or from externally generated
vortices. Wolfgang et al. (1999) demonstrated experimentally and numerically that
high flexibility of the peduncle region allows for the caudal fin to precisely redirect
vorticity shed upstream for optimal propulsion.

In the simulations conducted here, the high curvature in the peduncle region serves
the same purpose in allowing the fish to control the angle of attack at the tail and
shed vortices in an energy efficient way. We show, similar to Borazjani & Sotiropoulos
(2010), that the optimal kinematics is mostly independent of body shape. Indeed, the
key parameters are two-dimensional in essence and even a two-dimensional geometry
can help assess the energetic performance of swimming kinematics. It would also be
interesting, in a future study, to apply our optimization procedure to a wide range
of Lighthill, Reynolds and Strouhal numbers and compare the resulting values of tail
incidence, slip ration and stride length with those observed in nature, similar to Eloy
(2013).

5.2. Proposed schooling theory and comparison with Weihs’ theory
To our knowledge, the only existing hydrodynamic theory of schooling has been
proposed by Weihs (1973). This theory provides useful insight based on time-averaged
flow considerations, but does not factor in the potential benefits of energy extraction
from the vortices. According to Weihs, a fish swimming directly behind another fish
would experience higher relative velocity and would therefore have to spend extra
energy. On the contrary, a fish swimming between two adjacent fish wakes would
experience a reduced relative speed, allowing it to save energy. This strategy is
known as flow refuging (Liao 2007) or drafting. Deng & Shao (2006) demonstrated
in simulation that indeed, a fish swimming between two adjacent fish wakes reduces
its power consumption. However, Hemelrijk et al. (2015) show through simulating
infinite schools of fish that it is possible for fish to save energy in a variety of
additional configurations, including the in-line one. Similarly, we have shown in this
paper that it is possible for a fish to save energy regardless of whether it swims
directly behind another fish or at a lateral offset that allows it to benefit from a
reduced flow velocity. The phase difference between its undulation and the wake
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f d 1y 1φ (mod 1) ηQP (upstream) ηQP (downstream)

1.5 1 0 0.83 0.52 0.60
1.8 1 0 0.84 0.55 0.61
2.1 1 0 0.00 0.56 0.62
1.5 0.25 0 0.83 0.67 0.66
1.5 1 0.17 0.65 0.51 0.81

TABLE 5. Efficiency for a pair of undulating fish in various advantageous configurations.
The undulation frequency f , longitudinal separation d, transverse distance 1y and the phase
difference 1φ between the leading edge of the downstream fish and the vortices in the
wake of the upstream fish are considered.

vortices, 1φ, determines whether its drag is reduced or enhanced. When swimming
directly behind another fish, where the averaged flow is faster than the free stream,
the fish cannot save energy through drafting, and must therefore capture energy from
individual vortices in order to save energy. We show that, by using the transverse
velocity of the individual vortices to amplify the pressure effects of the undulating
motion, the fish can reduce its drag and swimming power. Conversely, swimming in
the region of the wake where the flow is, on average, slower, does not guarantee
a reduced drag. However, we observed that it is possible save more energy by
undulating in the region of reduced velocity than directly behind another fish, due
to the possibility of taking advantage of both drafting and individual vortex energy
capture. Up to 81 % quasi-propulsive efficiency can be reached for a fish undulating
with proper phase in the region of reduced flow velocity, compared with a maximum
of 66 % for a fish swimming directly behind another fish (table 5).

In the present study, the number of fish has been limited to two, in order to
investigate the basic mechanisms of fish swimming interactions. In large schools with
hundreds of fish, the flow is likely to be much more complex, and there might be
some hydrodynamic phenomena specific to large schools. However, the mechanisms
identified with two fish certainly transfer to larger schools. For instance, swimming
fish are largely unaffected by the fish swimming behind them, unless they have a very
close follower, in which case it is beneficial to them. Even in a large school, fish
encounter vortices as well as areas of reduced or increased flow velocity that they
can use for their own benefit. The values of how much energy is saved can probably
not be generalized, but the observed mechanisms can. Moreover, it is not expected
that the number of vortices would increase linearly with the number of fish. Indeed,
swimming fish interacting with vortices tend to reorganize the incoming vortices
with their own shed vortices, such that there is only one pair of strong vortices left
behind them, from which following fish can harness energy. It would be interesting
to progressively increase the number of fish and investigate whether, after a certain
number of fish following each other, the flow field converges.

The energy contained in individual vortices can be harnessed in several ways. For a
flapping foil in a Kármán vortex street, it is well known that the efficiency increases
if the foil vortices destructively interact with the oncoming vortices, while the
thrust can be enhanced if the foil vortices constructively interact with the oncoming
vortices (Gopalkrishnan et al. 1994; Streitlien et al. 1996). Similarly, at the tail of
the downstream fish, we observed that constructive interactions between the oncoming
wake vortices and the vortices shed at the trailing edge were associated with reduced
efficiency, while destructive interactions correlated with increased efficiency.
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While this is consistent with the findings of Hemelrijk et al. (2015) in that the
timing of the head is important when swimming directly behind another fish, the
mechanism that we find responsible for the increased efficiency is different. Hemelrijk
claims that the fish gains a hydrodynamic advantage when both vortices from the
oncoming vortex street are captured on the same side of the head. This is impossible
under the parameters of our simulation, but we find that the following fish is still
able to increase its efficiency at the head using appropriate timing. However, for a
fish swimming within a wake, interactions occur not only between the wake vortices
and the vortices shed at the fish’s trailing edge, but also between the oncoming wake
vortices and vortices emanating from the boundary layer of the fish. The interactions
between the fish body and the oncoming vortices can result in enhanced thrust
and/or improved efficiency. We show that the downstream fish can reduce its drag
by consistently turning its head in a manner that employs the oncoming vortex flow
to increase the transverse velocity across the head, amplifying the pressure field
created at the head. While this increases the power consumed by the fish to rotate its
head, the pressure drag at the head is decreased substantially to result in an overall
improvement to the efficiency.

While reduced drag implies a reduced undulation amplitude for open-water
self-propelled swimming, the correlation with energy saving is not as straightforward
within a school, because the vortices impact both the drag and the swimming power.
Since the quasi-propulsive efficiency is defined as RUs/P̄in, the power consumed
must be reduced for an increased efficiency. However, it can be directly or indirectly
reduced. Directly, the power is reduced when vortices along the body of the fish exert
force in the direction the fish is oscillating, thereby doing work on the fish. Indirectly,
the vortices can help to reduce the overall drag on the fish, therefore reducing the
amount of work the fish must perform to self-propel. If the undulation amplitude was
kept constant, phases 0 61φ 6 0.5 would result in an increased drag and decreased
power, and the reverse would apply to phases 0.5 61φ 6 1. The energy benefits of
a reduced amplitude generally more than compensate for the increased swimming
power, such that drag reduction tends to result in power reduction. However, the
phase resulting in the smallest amplitude usually does not coincide exactly with the
optimal one. This suggests that multiple mechanisms are important for the efficiency
of the downstream foil. In particular, the drag is mostly governed by the interaction
between the head of the fish and the vortices, whereas the power is mostly governed
by the interaction between these vortices and the tail, where the transverse velocities
are much larger. The exact value of the optimal phase, therefore, depends on the
undulation frequency and the gait.

In summary, a fish undulating in a vortex street cannot be considered as a rigid body
with a propeller, located inside a jet. Regardless of the exact location of the fish in the
vortex street, constructive interactions between the undulating body and the individual
vortices can result in enhanced thrust, while destructive interactions result in increased
swimming power. The exact value of the optimal phase depends on the gait details but,
in general, the drag reduction configurations are the most advantageous, and it is easier
to reduce drag when undulating in a region of averaged reduced flow velocity, even in
an asymmetric configuration. Additional power savings might be possible by adjusting
the gait to the configuration of the vortices, as observed by Liao et al. (2003a) in fish
swimming behind a cylinder.

6. Summary and conclusions
We established through 2-D and 3-D numerical simulations the conditions for

optimal propulsion in undulatory fish swimming, first for a single self-propelled fish
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and then for a pair of identically shaped self-propelled fish moving in line or at an
offset, separated axially by a distance d.

First, we considered the problem of optimal propulsion of an undulating, self-
propelled fish-like body, fully accounting for linear and angular recoil. We employed
2-D simulations to conduct an extensive parametric search and then, by employing
targeted 3-D simulations, we established that properties found in two dimensions are
qualitatively similar to those for 3-D simulations.

In summary, the assumptions we employed in order to render the study feasible are:

(a) Simulations were conducted at a Reynolds number of 5000.
(b) For the 2-D simulations, we modelled the fish body as an undulating NACA0012,

while a danio-shaped body was used for 3-D simulations. We modelled the main
body of the fish and its caudal fin but not the other fins or details on the body,
such as other fins, finlets, eyes and other protrusions and scales.

(c) The motion of the fish consists of a steady axial translation at a prescribed
speed, and a lateral body deformation in the form of a travelling wave of
constant frequency f and wavelength λ = 1. Free axial rigid body motion as
well as lateral and angular recoil were permitted and studied for their effect on
propulsive efficiency.

(d) The bending envelope was chosen to be either a quadratic or a Gaussian
function of the length along the fish. Indeed, the total displacement envelope of
live carangiform and anguilliform swimmers can be approximated by a quadratic
function, but, after subtraction of the recoil, the envelope of body deformation
is best approximated by a Gaussian function. For both functions, two parameters
were sufficient to specify the shape of the envelope, with a third parameter, a0,
to control the amplitude of the envelope.

(e) To maximize the quasi-propulsive efficiency (i.e. to minimize the energy
expended), the two parameters used to specify the shape for each envelope
(3.1) and (3.2) were varied using an optimization scheme.

( f ) A proportional-integral-derivative (PID) controller adjusts the amplitude of
oscillation a0 until self-propulsion is obtained and, additionally, maintains the
heading of the fish by adjusting the camber.

The conclusions for optimal 2-D swimming are as follows:

(a) As with rigid flapping foils, the Strouhal number, phase angle between heave and
pitch at the trailing edge and nominal angle of attack are the principal parameters
affecting the efficiency of propulsion.

(b) Angular recoil has a significant impact on the efficiency of propulsion and hence
must always be accounted for.

(c) A Gaussian envelope enables a body deformation with high curvature in the
region where the peduncle of the fish would be. This effectively allows the
caudal fin to pitch independently with respect to the peduncle motion, and this
extra degree of freedom allows for the control of flow patterns forming upstream
of that position. Hence, whereas the convex profile traditionally used to model
carangiform swimming provides quasi-propulsive efficiency of approximately
35 %, an optimized profile results in efficiency of 57 %.

(d) As the swimming frequency increases, the peak of the Gaussian envelope should
become sharper in order to compensate the large angle of attack generated by
the lateral motion of the tail. As a result, optimal motion at low frequency is
very similar to anguilliform swimming, with moderate bending of the entire body,
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while optimal motion at high frequency looks like thunniform swimming, with
very large bending around the peduncle.

For 3-D swimming of a danio-shaped fish, which explicitly models the peduncle
and caudal fin, the optimality conditions were observed to be very close qualitatively
to those of 2-D swimming, although the efficiency was consistently lower:

(a) Angular recoil has significant impact on efficiency, as in 2-D swimming.
(b) Similarly to finite aspect ratio rigid flapping foils, the Strouhal number and

maximum angle of attack are principal parameters affecting efficiency: For
higher values of the Strouhal number the wake is also found to bifurcate, from
a single row of connected vortex rings to a double row of vortex rings, resulting
in reduced efficiency, as well as a complex three-dimensional structure in the
wake. As expected, optimization reduces the Strouhal number to be closer to the
optimal range, and hence the effect of wake bifurcation is also reduced. Within
our parametric space, the Strouhal number was not reduced below 0.4, and hence
the effect of a bifurcating wake was not totally eliminated. It is expected that by,
for example, increasing the span of the caudal fin, which reduces the required
thrust coefficient, further increase in efficiency is possible.

(c) The sharp curvature of the envelope of body deformation at the peduncle affects
efficiency significantly. The efficiency increases from 22 % for a convex imposed
motion to 34 % for an optimized body deformation with large deformation around
the peduncle; both at Reynolds number 5000.

(d) For optimized body deformation, heave and pitch motion at the trailing edge have
a phase angle close to 90◦, as for a 2-D swimming fish, while the corresponding
angle of attack is 17◦. The parametric dependence of the envelope shape is also
qualitatively similar to two dimensions (figure 17).

(e) The simplified fish geometry gives important insight about how the two-
dimensional deformation of the body and tail affect swimming efficiency of
a BCF swimmer. We believe that these results generalize to a wide range of fish
body shapes. However, fish have multiple fins with complex three-dimensional
motions that they use to control the flow, and it would be interesting to
investigate these mechanisms as well.

The resulting wake has a periodic 3-D structure with coherent vortices that
another fish can use to save energy by properly timing its motion. However, the
three-dimensional flow around a fish is far more complex than the flow around a
two-dimensional foil. Since the three-dimensional effects mostly result in a loss of
efficiency, the optimization reduces these effects while distributing the production of
thrust between the body and the tail (resulting in ηQP = 34 %).

Turning to the 2-D swimming of two identical, self-propelled fish in close proximity,
the geometric models and assumptions employed for a single fish optimization were
used, under the following additional conditions: both fish swim at the same speed and
at a constant distance; the downstream fish is either directly behind the upstream fish,
or at a lateral offset. Both fish also have the same deformation envelope, optimized in
open water, but the amplitude of motion of each fish is adjusted separately to achieve
self-propulsion. The power of each fish is compared with the power required when
swimming alone. The following results are obtained:

(a) The upstream fish may benefit from the mere presence of the downstream fish for
very short relative distances. For example, a 28 % energy saving at a distance of
d= 0.25 is achieved, but as the distance increases this is quickly reduced.
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(b) The downstream fish can benefit energetically even at axial distances equal to
several times the body length, both in-line and in an offset position. This
proves that energy saving is achieved through interaction with individual
vortices as opposed to taking advantage of reduced oncoming flow (drafting),
because in the in-line position the downstream fish is in a region of averaged
increased relative velocity, which would be expected to cause an increase in
drag.

(c) The axial force on the downstream fish is mostly affected by the interaction
between the head of the fish and the oncoming vortices, whereas the power
required to sustain the undulating motion is affected by the interaction between
these vortices and the body motion downstream from the head. The critical
parameter for efficiency is the phasing between the head motion and the arrival
of the vortices, since in general, a reduced drag results in a greater power
reduction.

(d) For the in-line arrangement, when fixing the relative distance to one body length,
d = 1, and varying the frequency, the efficiency of the downstream fish can
increase to 62 % for the optimal phase between the head motion and the arrival
of the upstream fish vortices.

(e) For the offset arrangement, at 1y = 0.17, efficiency increases further, as the
downstream fish also exploits the reduction in oncoming velocity. Still, an
optimized phase is required, which makes it possible the reach a quasi-propulsive
efficiency 81 %, even though the fish can only interact with every other
vortex produced by the upstream fish. It is expected that the efficiency of
the downstream fish would increase further if there were two fish in the front,
spaced by 1y= 0.34 and perfectly synchronized.

( f ) Although the upstream fish vortices interact with the downstream fish over
its entire length, as described above, it is remarkable that, at the tail of the
downstream fish, the upstream and downstream fish vortices interact following
the rules of Gopalkrishnan et al. (1994), viz. constructive interaction results in
reduced efficiency, while destructive interaction provides increased efficiency.

(g) Since the 3-D wake behind an undulating fish body has a similar periodic
structure with coherent vortices, it seems reasonable to extrapolate the present
results to actual fish. However, the 3-D vortex structures are far more complex
than the 2-D vortex street, therefore the energy savings are likely to be less than
those observed in the idealized 2-D case.

Hence, we can conclude that swimming power can be reduced by swimming
in a group for any position of the downstream fish; and for the upstream fish
when positioned at close distances from the downstream fish. For the downstream
fish, it can improve its thrust by interacting with oncoming vortices, and since
reduced drag also reduces the power required to swim, this results in an increase
of efficiency. On the contrary, bad timing leads to enhanced drag and swimming
power. The schooling theory by Weihs (1973) predicts that a fish swimming directly
behind another fish would experience increased drag and have to expend more
power than in open water. We show here that an additional consideration must be
made on energy capture from the oncoming vortices, which depends on the phasing
of the undulating motion with respect to the vortex street. When swimming in
an offset location, energy savings can be maximized by simultaneously extracting
energy from individual vortices and taking advantage of reduced oncoming flow
velocity.
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FIGURE 34. Time-averaged friction and pressure drag (respectively CDf and CDp) on a
NACA0012 at Reynolds number Re= 5000 and angle of attack 0◦ and 5◦ as a function
of grid resolution. The relative error E(dx) is computed with respect to XFOIL: E(dx)=
CDBDIM/CDXFOIL − 1.
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Appendix A. Numerical method validation
Problems previously studied with BDIM include ship flows and flexible wavemaker

flows (Weymouth et al. 2006), shedding of vorticity from a rapidly displaced foil
(Wibawa et al. 2012) and a cephalopod-like deformable jet-propelled body (Weymouth
& Triantafyllou 2013). In Maertens & Weymouth (2015) we have demonstrated the
ability of BDIM to handle several moving bodies and generalized the original method
to accurately simulate the flow around streamlined foils at Reynolds numbers of the
order of Re= 104. Figure 34 shows the error in the friction and pressure drag on a
NACA0012 at Reynolds number Re = 5000 as a function of grid resolution. At the
finest resolution, the error is well within 10 %.

In order to validate the code for simulating undulating foils, the force and power
resulting from a fully imposed kinematics are compared with results reported in the
literature. Finally, a convergence study and sensitivity analysis on a self-propelled
undulating foil are performed.

A.1. Undulating NACA0012 with fully imposed kinematics
Using a fully imposed carangiform undulation:

h(x, t)= (0.1− 0.0825(x− 1)+ 0.1625(x2 − 1)) sin(2π(x− ft)), (A 1)

the undulation frequency is varied from f = 0.5 to f = 2 and the resulting
time-averaged force and power coefficients are compared to the values from Dong &
Lu (2007) in figure 35. Note that in these simulations the kinematics is fully imposed,
not allowing for recoil.
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FIGURE 35. (Colour online) Time-averaged drag and power coefficients for an undulating
NACA0012 as a function of frequency, compared with values from Dong & Lu (2007).
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FIGURE 36. (Colour online) (a) Drag and (b) pressure coefficient on an undulating
NACA0012 with carangiform motion at f = 1/T = 2.1. Various grids and constraints are
compared. Grid 2 is twice as fine as grid 1, while the computational domain of grid 3 is
twice as large as that of grid 1.

Similarly to Dong & Lu (2007), we find that the average power coefficient, slightly
negative at f = 0.5, increases to around 0.25 at f = 2, and that the drag is positive
for f < 1.6 and negative for f > 1.6. The good agreement between our method and
the results from Dong & Lu (2007) serves as a validation of the force and power
calculation routines for an undulating foil, and indicates that both drag a power
coefficient are estimated within a 10 % accuracy.

A.2. Self-propelled undulating NACA0012
We now ensure that the simulation results presented here are independent of the grid
parameters. In this section we consider the carangiform motion with frequency f = 2.1.

Figure 36 shows the evolution of power and drag coefficients during an undulation
period T = 1/f for various configurations. By comparing the free undulation and the
fixed x case, we first notice that fixing the x location of the foil does not impact the
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Case CP (CP −CP)max (CD)max a0

Free, grid 1 0.124 0.153 0.054 0.100
Fixed x, grid 1 0.125 0.155 0.065 0.100
No recoil, grid 1 0.093 0.087 0.054 0.065
Fixed x, grid 2 0.112 0.165 0.068 0.097
Fixed x, grid 3 0.125 0.156 0.065 0.099

TABLE 6. Mean and maximum amplitude of power coefficient, amplitude of drag
coefficient and undulation amplitude for a NACA0012 with carangiform amplitude at f =
2.1 and 0 drag.

power, confirming the observations from Bale et al. (2014). The amplitude of the drag
oscillations are a bit larger for the case with fixed x location, as would be expected,
but this does not impact any of the results discussed in this paper. On the other hand,
precluding all recoil completely changes the phase and amplitude of the power and
drag coefficients. Figure 36 also shows that the power and drag coefficients estimated
on grid 1 (introduced in § 2.3) are very close to those estimated on a grid twice as fine
(grid 2, dx= dy= 1/320) and a grid twice as large (grid 3, x∈ [−12, 14], y∈ [−4, 4]).
Table 6 summarizes the mean and maximum power, maximum drag and undulation
amplitude a0 for all these cases.

These results confirm that, while fixing the x location of the foil will not impact
our swimming efficiency estimates, the foil should be let free to heave and pitch.
Therefore, a foil fixed in x, free to heave and pitch under the influence of the
hydrodynamic forces will be used throughout this chapter. Moreover, the estimates
on grid 1 being very close to those on a finer and larger grid, grid 1 (5 points
across the boundary layer) will be used for the optimization procedures with a fish
in open water, whereas grid 2 (10 points across the boundary layer) will be used for
visualization and for a swimming pair.

Appendix B. Feedback controller
In steady state, the time-averaged velocity of a swimming fish is constant and the

mean forces on the swimmer are 0. In order to ensure that the system converges
toward a steady state in which the swimming velocity is the prescribed velocity Us,
we designed a PID controller that adjusts the thrust by tuning the amplitude of the
swimming gait a0 and the mean camber C. If the fish is fully self-propelled, the
time-averaged linear momentum in x is used as feedback (referred to as displacement
control) for a0.

Since the amplitude of the oscillations in vx
c is very small, in most cases we actually

fix the fish in x in order to reduce the PID convergence time. In this case (referred to
as force control), the time-averaged drag is used as feedback. However, it is important
to let the fish move freely in heave and pitch under the effect of the hydrodynamic
forces. In order to ensure stability of the fish in heave and pitch, the time-averaged
linear momentum in y is used as the input to a PID controller that tunes the camber
parameter C of the y1(x) function defined in (2.3).

For a self-propelled fish with flapping frequency f = 1/T , we define the error as:

e(tn)= f
n−1∑
k=n0

mvc(tk)(tk+1 − tk), (B 1)
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where n0 is the first index k such that tk > tn − T . If the x motion is fixed and force
control is used, Fx

h replaces mvx
c in the calculation of ex.

The integral of the error is calculated as:

ei(tn)=
n∑

k=0

e(tk)(tk+1 − tk), (B 2)

and its derivative is:

ed(tn)= f
[
(tn0 − (tn − T))e(tn0−1)+ ((tn − T)− tn0−1)e(tn0)

tn0 − tn0−1

]
. (B 3)

At the beginning of each time step, the parameters a0 from (2.1) and C from (2.3)
are updated as:

a0(tn)=max[a0(tn−1)+ (tn − tn−1)(Kx
pex(tn)+Kx

i ex
i (tn)+Kx

dex
d(tn)), 0],

C(tn)=−(Ky
pey(tn)+Ky

i ey
i (tn)+Ky

dey
d(tn)),

}
(B 4)

where ex and ey denote respectively the x and y components of the error vector e. As
a result, if the fish is too slow or produces a negative thrust, a0 increases, which will
increase its swimming speed or thrust. Similarly, if the fish tends to move towards its
right (y> 0), then C will be negative (head turned towards its left), which will bring
it back toward y= 0.

The gain coefficients used in this study are

for force control in x : Kx
p = 5, Kx

i = 5, Kx
d = 5, (B 5)

for displacement control in x : Kx
p = 5, Kx

i = 1, Kx
d = 100, (B 6)

for displacement control in y : Ky
p = 8, Ky

i = 10, Ky
d = 12. (B 7)
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